数B【ベクトル】ベクトルと図形(平面)

2008 中央大学 理工学部 (センター試験併用)【3】

鋭角三角形 ABC の外接円 S の中心(外心)を O とし、S の半径を R とする。円 S の弧 \widehat{BC} 、 \widehat{CA} 、 \widehat{AB} と直線 BC、CA、AB に関して対称な円弧をそれぞれ L_1 、 L_2 、 L_3 とする。このとき、3つの弧 L_1 、 L_2 、 L_3 は三角形ABC の垂心で交わる。このことを次のようにして示せ。

三角形 ABC の外心 O と直線 BC、CA、AB に関して対称な点をそれぞれ A'、B'、C' とする。また、 $\overrightarrow{OA} = \overrightarrow{a}$ 、 $\overrightarrow{OB} = \overrightarrow{b}$ 、 $\overrightarrow{OC} = \overrightarrow{c}$ とし、H を $\overrightarrow{OH} = \overrightarrow{a} + \overrightarrow{b} + \overrightarrow{c}$ により定まる点とする。

- (1) $\overrightarrow{OA'}$ 、 $\overrightarrow{OB'}$ 、 $\overrightarrow{OC'}$ を \overrightarrow{a} 、 \overrightarrow{b} 、 \overrightarrow{c} を用いて表せ。
- (2) $\overrightarrow{A'B'}$ を \overrightarrow{a} と \overrightarrow{b} で表し、三角形 A'B'C' は三角形 ABC と合同であることを示せ。
- (3) $\overrightarrow{HA'}$ 、 $\overrightarrow{HB'}$ 、 $\overrightarrow{HC'}$ を \overrightarrow{a} 、 \overrightarrow{b} 、 \overrightarrow{c} を用いて表し、3つの弧 L_1 、 L_2 、 L_3 は点 H で交わることを示せ。
- (4) \overrightarrow{CH} を \overrightarrow{a} 、 \overrightarrow{b} 、 \overrightarrow{c} を用いて表し、点 H は三角形 ABC の垂心であることを示せ。

ベクトルを用いて順序立てて証明をするのであるが、シンデレラで描いてみれば直感的によく分かる。 とてもきれいな性質なので、図形の美しさを体験させるよい教材である。

